

Simulation of Turbulent Premixed Combustion

John Bell

jbbell@lbl.gov

Center for Computational Sciences and Engineering Lawrence Berkeley National Laboratory, USA

http://seesar.lbl.gov/ccse/

Presented at: Cambridge University

Cambridge, UK

May 2003

Collaborators: M. Day, V. Beckner, J. Grcar, M. Lijewski, R. Cheng, M. Johnson, I. Shepherd

Objective

Simulate laboratory-scale turbulent premixed combustion using detailed kinetics and transport without subgrid models for turbulence or turbulence-chemistry interaction

Application:

Fundamental studies of turbulent flame dynamics

Pollutant (NO_x) formation in turbulent laboratory flame

Traditional approach:

Compressible DNS

- High-order explicit finite-difference methods
- At least $O(10^9)$ zones
- At least $O(10^6)$ timesteps

Premixed Low-Swirl Burner

Rod-stabilized Flame

Photo courtesy R. Cheng

Approach

With traditional methods, laboratory-scale simulations with detailed chemistry and transport are intractable for the near future

Observation:

- Laboratory turbulent flames are low Mach number
- Regions requiring high-resolution are localized in space

Our approach:

- Low Mach number formulation
 - Eliminate acoustic time-step restriction while retaining compressibility effects due to heat release
 - Conserve species and enthalpy
- Adaptive mesh refinement
 - Localize mesh where needed
 - Complexity from synchronization of elliptic solves
- Parallel architectures
 - Distributed memory implementation using BoxLib framework
 - Dynamic load balancing
 - Heterogeneous work load

Low Mach Number Combustion

Low Mach number model, $M=U/c\ll 1$ (Rehm & Baum 1978, Majda & Sethian 1985)

$$p(\vec{x},t) = p_0(t) + \pi(\vec{x},t)$$
 where $\pi/p_0 \sim \mathcal{O}(M^2)$

- lacksquare p_0 does not affect local dynamics, π does not affect thermodynamics
- Acoustic waves analytically removed (or, have been "relaxed" away)
- $lackbox{ }\vec{U}$ satisfies a divergence constraint, $abla\cdot\vec{U}=S$

Conservation equations:

$$\rho \frac{D\vec{U}}{Dt} + \nabla \pi = \nabla \cdot \tau$$

$$\frac{\partial \rho Y_{\ell}}{\partial t} + \nabla \cdot \left(\rho Y_{\ell} \vec{U}\right) = \nabla \cdot \vec{F}_{\ell} + \rho \dot{\omega}_{\ell}$$

$$\frac{\partial \rho h}{\partial t} + \nabla \cdot \left(\rho h \vec{U}\right) = \nabla \cdot \vec{Q}$$

- \blacksquare Y_{ℓ} mass fraction
- lacksquare $ec{F}_\ell$ species diffusion, $\sum ec{F}_\ell = 0$
- \bullet $\dot{\omega}_{\ell}$ species production, $\sum \dot{\omega}_{\ell} = 0$
- h enthalpy $h = \sum Y_{\ell} h_{\ell}(T)$
- $\blacksquare \vec{Q}$ heat flux

$$p = \rho RT \sum Y_{\ell}/W_{\ell}$$

Fractional Step Approach

- 1. Advance velocity from \vec{U}^n to $\vec{U}^{n+1,*}$ using explicit advection terms, semi-implicit diffusion terms, and a lagged pressure gradient.
- 2. Update the species, enthalpy and temperature, using explicit advection terms, semi-implicit diffusion terms, and source terms from stiff ODE integrators. Use the updated values to compute S^{n+1}
- 3. Decompose $\vec{U}^{n+1,*}$ to extract the component satisfying the divergence constraint.

This decomposition is achieved by solving

$$\nabla \cdot \left(\frac{1}{\rho} \nabla \phi\right) = \nabla \cdot \vec{U}^{n+1,*} - S^{n+1}$$

for ϕ , and setting

$$p^{n+1/2} = p^{n-1/2} + \phi$$

and

$$\vec{U}^{n+1} = \vec{U}^{n+1,*} - \frac{1}{\rho} \nabla \phi$$

Properties of the methodology

Overall operator-split projection formulation is 2^{nd} -order accurate in space and time.

Godunov-type discretization of advection terms provides a robust 2^{nd} -order accurate treatment of advective transport.

Formulation conserves species, mass and energy.

Equation of state is only approximately satisfied

$$p_o \neq \rho RT \sum_{m} \frac{Y_m}{W_m}$$

but modified constraint minimizes drift from equation of state.

AMR - Grid Structure

Block-structured hierarchical grids

Each grid patch (2D or 3D)

- Logically structured, rectangular
- Refined in space and time by evenly dividing coarse grid cells
- Dynamically created/destroyed to track time-dependent features

2D adaptive grid hierarchy

Subcycling:

- Advance level ℓ, then
 - Advance level $\ell + 1$ level ℓ supplies boundary data
 - Synchronize levels ℓ and $\ell+1$

Preserves properties of single-grid algorithm

AMR level operations

Organize grids by refinement level, couple through "ghost" cells

- Level data
- Interpolated data

On the coarse-fine interface:

- Fine: Boundary cells filled from coarse data
 - Interpolated in space and time
- Coarse: Incorporate improved fine solution
 - "Synchronization"

Dynamic Load-Balancing

Approach: Estimate work per grid, distribute using heuristic KNAPSACK algorithm

Cells/grid often a good work estimate, but chemical kinetics may be highly variable

- Monitor chemistry integration work
- Distribute chemistry work based on this work estimate

Parallel Communication: AMR data communication patterns are complex

- Easy: distribute grids at a single level, minimize off-processor communication
- Hard: Incorporate coarse-fine interpolation (also, "recursive" interpolation)

Model problems

2-D Vortex flame interactions

(28th International Combustion Sympsium, 2000)

- 1.2 × 4.8 mm domain
- 53 species, 325 reactions

3-D Turbulent flame sheet

(29th International Combustion Sympsium, 2002)

- .8 × .8 × 1.6 cm domain
- 21 species, 84 reactions

Laboratory-scale V-flame

(19th International Colloquium on the Dynamics of Explosions and Reactive Systems, 2003)

- 12 × 12 × 12 cm domain
- 21 species, 84 reactions

Vortex flame interaction

$$- \phi = 0.8$$

Mech: GRI-Mech 1.2

- 32 species, 177 reactions

Representative adaptive solution

Chemical behavior in VFI

 ${\rm CH_3O}$ enhanced where $\kappa < 0$

 C_2H_4 enhanced where $\kappa > 0$

Turbulence flame sheet

Three-dimensional isotropic turbulence propagating into a premixed flame

- Tanahashi, et al (2000, 2002) Hydrogen, DNS
- Bell, et al (2002) Methane, low Mach

Flame:

- $\phi = 0.8$
- $\delta_L = 0.53$ mm
- $S_L = 25 \text{cm/s}$

Turbulence:

- $\ell_t = 1.0$ mm
- $u'/S_L = 1.7, 4.3$

Computations:

- 8×8×16 mm domain
- doubly periodic
- $\Delta x_{\rm eff} = 62.5 \mu {\rm m}$

Model:

- DRM-19
- 20 species/84 reacs

T = 1500 K surfaces, colored by mean curvature.

Heat Release and Flame Curvature

Carbon Flow Network

Heat release vs. Curvature $(\Delta H, \kappa \text{ normalized by } \Delta H_L, \delta_L)$

Redistribution of Species

Turbulence chemistry interaction

Species concentration versus flame curvature

Full-scale Simulations

Strategy - Use compressible simulations to characterize nozzle flow

Compressible simulations of nozzle:

- Compressible effects are important in nozzle with swirl
- Provide inflow to 3-D low Mach number model

Low Mach number inflow boundary

- Direct coupling to compressible solver
- Use statistics

Compressible Flow with Geometry

Model geometry as front embedded in regular Cartesian grid

- Volume fractions
- Area Fractions

Finite volume discretization (Chern and Colella)

- Conservative update unstable in small cells
- Update with stable fraction
- Distribute remainder to neighboring cells

Adaptive, parallel, 3D, ...

Pember et al., JCP, 1995

Nozzle Geometry

Nozzle Simulations

V-flame Setup

- Domain: 12cm x 12cm x 12cm
- DRM-19: 21 species, 84 reactions
- Mixture model for differential diffusion
- $\ell_t = 3.5 mm$
- 3 m/s mean inflow

Results: Computation vs. Experiment

 CH_4 from simulation

Single image from experimental PIV

Further Comparisons and Analysis

1.5 1 0.5 -0.5 -1 -1.5, 5 -1 -0.5 0 0.5 1 1.5

Vertical cuts – computation

0.07 0.06 0.05 0.04 0.03 0.02 0.01 0 0.01 0.02

Vertical cuts – experiment

Flame brush thickness

Flame Surface

Instantaneous flame surface

Turbulent flame speed enhancement:

$$S_t = 1.9 S_L$$

Area enhancement due to wrinkling:

$$A_t = 1.25 A_L$$

Joint with M. Johnson, R. Cheng, and I. Shepherd, EETD, LBNL

Low Swirl Burner Setup

Mean profiles

Low Swirl Burner Setup

Low Swirl Burner - Preliminary Results

Summary and Future Work

Summary

Algorithm for low Mach number combustion

- Adaptive
- Conservative
- Second-order in time and space
- Parallel

Application to turbulent premixed combustion

- Vortex flame interaction
- 3D turbulent flame sheet
- Laboratory-scale turbulent flames

Future Work

- Futher validation / comparison with experiment
- Modeling of low swirl burner
- Characterize turbulent flame propagation properties
- Investigate turbulent flame chemistry